半岛体育app2022年风电行业发展情况及发展趋势分析
栏目:公司动态 发布时间:2023-05-14
 半岛体育app全球风电行业已有超过40年的发展历史,风电行业技术和产业发展起源于丹麦,并在欧洲地区率先发展壮大。在风电行业早期发展过程中,欧洲风机制造企业与风电运营企业掌握核心技术并占据主要市场地位。  中国风电行业曾长期处于追赶者地位,并主要学习欧洲先进企业的技术与生产管理经验。上世纪九十年代起步之初,我国通过“乘风计划”、国家科技攻关计划、“863”计划等,支持风电制造业的技术引进、吸收和

  半岛体育app全球风电行业已有超过40年的发展历史,风电行业技术和产业发展起源于丹麦,并在欧洲地区率先发展壮大。在风电行业早期发展过程中,欧洲风机制造企业与风电运营企业掌握核心技术并占据主要市场地位。

  中国风电行业曾长期处于追赶者地位,并主要学习欧洲先进企业的技术与生产管理经验。上世纪九十年代起步之初,我国通过“乘风计划”、国家科技攻关计划、“863”计划等,支持风电制造业的技术引进、吸收和再创新,大力发展风电市场并培育了国内装备制造业,形成具有竞争力的风电装备全产业链。

  经过对欧洲先进企业的长期学习与追赶,中国风电行业已经由技术引进、联合设计、消化吸收逐步过渡到自主研发阶段。与此同时,中国风电产业也在蓬勃发展。2000年我国风电装机仅0.3GW,2002年我国国产化机组开始批量生产,2012年中国风电装机突破60GW,成为世界第一风电大国并保持至今。

  国家能源结构的优化对经济发展质量提升具有积极意义。在全球能源结构向低碳化转变、能源消费结构不断优化的背景下,可再生能源需求持续增长的趋势具备确定性。风能凭借其资源总量丰富、环保、运行管理自动化程度高、度电成本持续降低等突出的优势,目前已成为开发和应用最为广泛的可再生能源之一,是全球可再生能源开发与利用的重要构成,其发展正逐渐从补充性能源向替代性能源持续转变,其应用是推动能源结构优化、能源低碳化的重要驱动力。

  近年来,受风电补贴政策引致的抢装潮影响,2019年下半年以来风电市场呈现供需两旺的格局。未来,随着风电补贴政策的退出,预期市场需求将有一定波动。但由于风电技术的不断进步,风电建造成本及度电成本近年来迅速下降,未来能够逐步适应风电平价上网的要求。长期来看,风电产业将形成可持续发展态势。

  根据国家能源局《风电发展“十三五”规划》(2016年11月),为实现2020年和2030年非化石能源占一次能源消费比重15%和20%的目标,促进能源转型,我国必须加快推动风电等可再生能源产业发展。“碳达峰、碳中和”目标的提出,给中国风电行业再次注入强心剂。

  到2030年,中国单位国内生产总值二氧化碳排放将比2005年下降65%以上,非化石能源占一次能源消费比重将达到25%左右,风电、太阳能发电总装机容量将达到12亿kW以上。

  实现碳达峰、碳中和是一场广泛而深刻的经济社会系统性变革,要把碳达峰、碳中和纳入生态文明建设整体布局,拿出抓铁有痕的劲头,如期实现2030年前碳达峰、2060年前碳中和的目标。风电行业将迎来长期高速发展机会。

  中国是世界最大的风电市场,拥有丰富的风力资源。中国风电市场的繁荣在过去数十年发展历程中也推动着中国风电整机制造商的发展和进步,加上中国风电产业很长一段时间受到政策的大力支持与鼓励,风电产业发展迅速,部分行业领先企业的产品技术水平逐步向国际先进水平靠拢。

  资料来源:GWEC图:2001年至2021年全球累计风电装机容量单位:GW

  资料来源:GWEC中国是全球风电装机容量第一大国。根据GWEC《GlobalWindReport2022》统计数据,2021年,中国新增装机容量占全球51%。图:2021年全球新增装机容量地域分布

  根据中国可再生能源学会风能专业委员会统计数据,2021年,全国(除港、澳、台地区外)新增装机容量55.92GW,同比增长2.7%;累计装机容量346.7GW,同比增长19.2%,保持稳定增长态势。

  根据《2021年中国风电吊装容量统计简报》,2021年,中国六大区域的风电新增装机容量所占比例分别为华北(18.4%)、中南(25.8%)、西北(16.2%)、华东(23.9%)、西南(5.1%)、东北(10.6%)。“三北”地区新增装机容量占比为45%,中东南部地区新增装机容量占比达到55%。

  风电行业近三年在新技术、新产业、新业态、新模式等方面呈现以下特点:(1)行业技术不断革新,度电成本不断降低,平价上网逐步成为可能;(2)技术革新带来产业革新,风电场管理由过去的以人为主逐渐过渡到数字化管理,解放生产力,提升管理效率;(3)行业产生多种业态模式,风机整机厂商纷纷下沉产业链布局风电场建设领域,呈现混合业态模式;(4)商业模式逐步由单纯的风机销售向风机销售+风资源储备+EPC业务一体化商业模式发展。

  低碳环保是未来全球发展的主旋律,风电行业是从能源供给侧实现低碳环保的重点发展领域。我国将坚定不移地做好“碳达峰、碳中和”工作。要抓紧制定2030年前碳排放达峰行动方案,支持有条件的地方率先达峰。同时,要加快调整优化产业结构、能源结构,推动煤炭消费尽早达峰,大力发展新能源,加快建设全国用能权、碳排放权交易市场,完善能源消费双控制度。

  到2030年,中国单位国内生产总值二氧化碳排放将比2005年下降65%以上,非化石能源占一次能源消费比重将达到25%左右,风电、太阳能发电总装机容量将达到12亿kW以上。

  风电是可再生能源中应用最为成熟的形式之一。加速发展并实现风能替代作用、推动能源消费结构优化,既是整个能源产业与社会经济的发展需要,也是风电产业自身的发展目标,这其中重要的一环就是平价上网。风电行业发展初期,政策支持与电价补贴有效地促进了我国风电产业投入的提高、产量的提升、技术的进步、成本的下降,为最终实现平价上网奠定了一定发展基础,也是行业发展的必经阶段。近年来,推动竞价配置、推进平价上网成为主流政策导向与预期,促使市场出现在调价时间节点前集中对风电场进行建设的抢装潮现象。

  随着技术的不断进步,风电单机容量大型化发展,使得风电机组成本逐步降低,为初始投资成本下降提供空间。此外,发电利用小时数上升和弃风率下降使得风电上网电量逐年上升。上述因素综合贡献使得风电度电成本逐步下降。根据IRENA《RenewablePowerGenerationCostsin2020》,全球范围内,陆上风电加权平均LCOE从2010年的0.089美元/千瓦时下降至2020年的0.039美元/千瓦时,下降约56%;海上风电加权平均LCOE从2010年的0.162美元/千瓦时下降至2020年的0.084美元/千瓦时,下降约48%。根据大唐电科院预测,我国陆上风电度电成本将从2018年0.41元/千瓦时下降至2023年0.33元/千瓦时,下降幅度为20%;海上风电度电成本将从2018年0.5元/千瓦时下降至2023年0.41元/千瓦时,下降幅度为18%。

  度电成本的降低使得风电场运营企业在补贴退出后仍能保证一定的盈利空间,为风电平价上网与可持续发展提供保障。

  中国风能资源与用电负荷呈逆向分布态势。“三北”地区(华北、东北、西北)风能资源丰富,但却普遍远离用电负荷较高的东部、中部等地区,由此导致风电并网消纳往往存在问题,存在“弃风限电”的现象。

  自2016年起,国家能源局每年定期发布风电投资监测预警信息,指导省级及以下地方政府能源主管部门和企业根据市场条件合理推进风电项目开发投资建设,对弃风率过高的省份风电项目提出限制。上述措施在引导全国风电开发布局优化方面发挥了重要作用,为促进弃风限电问题逐年好转创造了有利条件。

  根据国家能源局统计,2020年全国弃风电量约166亿千瓦时,平均利用率97%,较上年同期提高1个百分点,弃风限电状况进一步得到缓解。

  单机容量大的风机具备更优的经济性,是未来风电行业发展的必然趋势。大兆瓦、高可靠性、高经济效益的风电项目整体解决方案在市场上的认可度高,具备大兆瓦机型产品能力的整机厂商在未来将更具市场竞争力。风电技术进步是单机容量大型化的基础,单机容量大型化将有效提高风能资源利用效率、提升风电项目投资开发运营的整体经济性、提高土地/海域利用效率、降低度电成本、提高投资回报、利于大规模项目开发,而风电度电成本又是平价上网政策稳步推进的重要基础,平价上网政策也将加速促进风电降本和大兆瓦机型的开发。

  在全球市场范围内,陆上风电领域,随着平价大基地项目、分散式风电项目的需求增加,对机组的风资源利用率要求提高,陆上风机功率已经逐步由2MW、3MW时代迈入4MW时代。海上风电领域大兆瓦机型发展更加迅速。

  风电行业已逐步开始积极从风机产品提供向风电服务提供转型,而风电数字化是风电精细化服务的必由之路。根据国家能源局《风电发展“十三五”规划》,要促进产业技术自主创新;加强大数据、人工智能等智能制造技术的应用,全面提升风电机组性能和智能化水平;掌握风电机组的降载优化、智能诊断、故障自恢复技术,掌握基于物联网、云计算和大数据分析的风电场智能化运维技术,掌握风电场多机组、风电场群的协同控制技术;鼓励企业利用新技术,降低运行管理成本,提高存量资产运行效率,增强市场竞争力。

  风电行业与数字技术融合已经成为行业发展的主流模式之一。数字化转型使数据逐渐从生产经营的副产品转变为参与生产经营的关键要素,逐步成为企业的战略性资源和关键生产力。风电企业通过风电机组传感、工业物联网、大数据等数字化建设,实现集数据采集、传输、分析于一体的智能工厂和智慧风场,改变原有的传统发电行业经验驱动的决策管理模式,依托多维度数据分析工具与智能算法,实现从产品研发、工艺仿真、生产运行、设备监控、风场服务的数字孪生,最终建立全过程数字驱动的虚拟企业,实现多场景智能优化决策,打造新型风电数字生态。

  近年来,风机制造市场呈现集中度逐步提高的趋势。根据CWEA统计,国内排名前十的风电整机企业新增装机市场份额由2013年的77.8%提高到2020年的91.5%,提高了13.7个百分点。

  行业集中度的提高带来行业优质资源的集中,一定程度加剧了头部市场参与者之间的竞争,同时,市场头部参与者对上游供应商的议价能力、对下游客户的综合服务能力都将得到提升。

  风机产品的设计使用寿命较长、产品本身较为复杂,因此后市场服务是风电产业链中的重要一环。根据国家能源局《风电发展“十三五”规划》,我国要推进产业服务体系建设;优化咨询服务业,鼓励通过市场竞争提高咨询服务质量;积极发展运行维护、技术改造、电力电量交易等专业化服务,做好市场管理与规则建设;创新运营模式与管理手段,充分共享行业服务资源;建立全国风电技术培训及人才培养基地,为风电从业人员提供技能培训和资质能力鉴定,与企业、高校、研究机构联合开展人才培养,健全产业服务体系。

  随着我国风电行业的持续发展,存量与增量风机的后市场服务需求也将逐步增加,后市场产业链环节也将迎来增长。科学的后市场服务模式,可以对风电场存量资产进行更加高效的经营,增收节支,实现风电投资收益的最大化。

  风力发电设备关系到电网的稳定运行与供电安全,因此技术标准极为严格。风机制造行业是典型的技术密集型行业。

  首先,风力发电机组产品及其各零部件、相关技术的复杂程度均较高,尤其是大型风力发电机组对产品性能、稳定性、产品效率等方面均有较高的要求,对风机产品质量要求极高。目前市场的头部企业其产品及技术均经过长时间的积累、发展以及市场的验证。新进入者难以在短期内获得先进的风机制造技术以及稳定的品控能力。

  其次,风力发电机组是一个复杂的技术体系。其产品与技术的研发涉及复杂的多学科专业体系,包括结构力学、理论力学、流体力学、空气动力学、电磁学、机械设计、材料力学、工艺工装、自动控制等,其生产工艺同样对设备、技术、管理、人员有着较高的要求。

  最后,风机产品大兆瓦、智能化、数字化趋势明显,产品更新换代与前沿技术的研究及产业化落地是保持竞争力的必要条件,需要足够的技术研发实力支撑。因此,风电行业对市场参与者的技术研发实力有较高要求。

  风电整机制造行业的客户多为已取得风电场投资建设资格的国家及地方大型国有发电集团或大型电力建设集团,该类企业一般会采取招标的方式选取风机制造商。在招投标活动中,发电集团在发放招标文件前,会进行资格审查,即对报名参加投标的申请人的承包能力、业绩、资格和资质、历史产品质量情况、财务状况和信誉等进行审查,并确定合格的投标人名单。具体来说,由于大型风力发电机组需要长时间在野外复杂的气候环境下运行,对产品运行期间的可靠性和稳定性要求较高,因此客户招投标时对风力发电机组制造商的产品认证、高效的运作系统、丰富的行业经验、成功的实战案例、高水平的服务团队以及系统的服务支持等综合实力均有严格要求。其中,良好的品牌声誉是对产品质量、履约能力最好的证明,也是客户选取风机供应商时的重要参考依据。因此,公司品牌与声誉构成了市场新进入企业的主要壁垒之一。

  风电设备质量是风电行业持续健康发展的重要基础,产品检测认证制度是保障设备质量的重要措施。目前,国家已经初步建立风电设备检测认证制度,凡是接入公共电网的新建风力发电项目所采用的风力发电机组及其风轮叶片、齿轮箱、发电机、变流器、控制器和轴承等关键零部件,须按照《GB/Z25458-2010风力发电机组合格认证规则及程序》进行型式认证,认证工作由国家主管部门批准的认证机构进行。新进企业需要利用更多时间来掌握关键核心技术进而通过风电设备的检测认证,成为市场进入壁垒之一。

  风力发电设备的技术密集型特点决定了其具有较高人才壁垒。风机产品的多学科特点决定其对于诸多学科领域均有专业人才需求,尤其是多学科、复合型人才更是市场上稀缺的人才。无论在产品研发、技术研究方面,还是在生产制造环节,专业人才都是重中之重。人才的储备和培养均需要较高的成本,核心技术人员以及各层级人才的储备、引进、培养与激励,已成为市场参与者核心竞争力的重要构成,也是行业主要壁垒之一。

  风力发电设备行业属于典型的资金密集型行业。从产品的初期研发测试,到获得订单后的投产交付,以及各项技术研究研发工作,均需要大量的资金投入以保障公司的生产经营与市场竞争力。因此,行业对市场参与者有较高的资金壁垒。

  风电行业作为可再生能源产业的重要组成部分,属于我国重点支持的战略性新兴产业,一直以来受到政策的大力支持。近年来,国务院及各个部委针对风电行业出台了一系列产业政策,涵盖定价机制、财政补贴、产业运营等各个方面,为风电行业发展创造了良好的政策环境。在政策的积极引导下,行业逐渐进入有序竞争阶段,行业结构不断优化,逐步实现可持续发展。近几年,政策主要导向为推动竞价配置、推进平价上网。短期来看,相关政策尤其是补贴政策的逐步调整,促使下游企业在调价时间节点前集中建设形成抢装潮;长期来看,风电作为国家新能源产业中重要一部分,实现平价上网是行业发展的必经之路,对产业的可持续发展具有积极意义。

  国家能源结构的优化对经济社会发展具有重要意义。中国经济社会的持续发展离不开稳定可持续的能源供应。长期以来,我国能源结构以煤为主,电力结构中煤电占据主导地位。伴随着能源需求的不断增长和对环境保护的日益重视,可再生能源替代化石能源成为必然的发展趋势,可再生能源产业已成为我国推进能源革命,构建清洁低碳、安全高效的能源体系的重要推动力量。

  在全球能源结构向低碳化转变,能源消费结构不断优化的背景下,可再生能源需求持续增长趋势具备确定性。根据国家统计局数据,2015年至2020年,我国天然气、水电、核电、风电等清洁能源消费量占比由18.0%增长至24.3%,清洁能源在能源供应结构中比重逐步增加。能源结构优化发展趋势将进一步推动风电行业的持续稳定发展。

  在市场需求和竞争的推动下,中国风机制造行业整体技术水平不断提高。国内领先企业通过技术引进、联合设计、消化吸收逐步过渡到自主研发阶段,部分企业已经全面掌握了产品技术能力。

  近年来,风电机组功率和风轮直径都呈现逐渐扩大之势,大兆瓦级风电机组的研发进程正在加快,市场上大兆瓦机型风电项目数量也逐渐增多。风机单机容量的增加,将有效提高风机的能源利用效率,降低度电成本,提升整个风电项目的投资回报率。随着风力发电机组相关技术的日趋成熟,大兆瓦机型的趋势愈发明确。未来,风力发电整体成本将持续下降,将进一步助推风电行业的整体发展。

  此外,风电机组在设计方面更加数字化、智能化、精细化,市场上不断研发出适合不同风资源环境特点和气候条件的定制化机组。零部件、风机设计、控制软件及载荷评估等方面关键技术的突破,进一步促进风电机组成本下降,进而助推下游风电场投资和运维成本不断降低,风电平价上网条件逐步成熟。

  风能作为我国最具开发潜力的清洁能源,具有储量丰富、分布广泛以及经济效益好等特征。根据国家能源研究所的《中国风电发展路线》显示,我国陆上III级及以上风能技术开发量(70米高度)在26亿千瓦以上,现有技术条件下实际可装机容量可以达到20亿千瓦以上。此外,在水深不超过50米的近海海域,风电实际可装机容量约为5亿千瓦。我国风能资源丰富,开发潜力巨大。

  特高压输电工程以及智能电网建设一直以来备受中国乃至全球能源领域关注。自2009年我国第一条交流特高压输电线路投运至今,特高压线路输送容量不断突破,大范围优化配置资源能力大幅提升。特高压输电的先进性、可靠性、经济性和环境友好性得到全面验证,而智能电网则具有坚强、自愈、兼容、经济、集成和优化六大特点,能显著提升风电并网运行控制能力。我国将特高压和智能电网纳入重大项目规划,体现国家对其建设的重视。未来,随着特高压和智能电网的开发建设,风电消纳并网能力将进一步得到提高。

  中国“三北”地区(华北、东北、西北)风能资源丰富,但却普遍远离用电负荷较高的东部、中部等地区,风能资源与电力消纳在区域上呈现逆向分布,由此导致“弃风限电”的现象的存在,短期内风电并网消纳与“弃风限电”问题仍是行业发展的难点问题之一。在更完善的电网建设与持续的能源结构优化与调整情况下,“弃风限电”问题正逐步得到缓解。

  随着我国风电产业近几年的高速扩张,国内企业逐渐规范化发展,市场集中度呈现提高趋势,风机整机厂商面临的市场竞争不断加剧。此外,随着我国风电行业发展,行

  业对专业人才的需求也日趋增加。目前,国内相关人员培训和储备机制尚不完善,高水平研发人才、专业技术人才的短缺成为制约国内风电企业持续发展的因素之一。

  虽然风力发电本身实现了清洁能源发电,然而风电场的建设占地规模较大,有时需要占据面积较大的林区林地或近海海域,随着风电场项目的开发与大型项目数量的增加,随之也会带来一定环保问题。例如,在中国植被覆盖较好的中、东、南部地区,涉及重点林区林地的风电项目开发审批压力变大;近海风资源丰富区域往往与海洋经济区域和生态区域重合,风电建设一定程度上与鱼类、鸟类及其他生物生存与生态影响相关。未来,随着政府部门对生态环境保护的要求及标准的提高,土地、海洋资源等审批流程将更加严格,风电项目的开发、建设、运营将承担更多环境保护责任。

  部分重要零部件依赖进口虽然中国风力发电机组零部件国产化趋势显著,叶片、齿轮箱、发电机等重要风机零部件已实现国产化,但从全产业层面来看,高端轴承、变流器核心部件、变桨系统核心部件等仍较高程度地依赖进口。前述关键零部件对国外供应链的依赖是制约中国成为高端风电设备制造强国的因素之一。